409349 Item Bank Name SIMULATION/B.E./CHEMICAL/2015/SEM-II						
Item Text	Option Text 1	Option Text 2	Option Text 3	Option Text 4		
Transport laws for momentum transfer is	Fourier,s law	Ficks law	Newton,s law	Einstein,s Law		
Transport laws are for	Molecular transport	Overall transport	Bulk transport	Turbulent transport		
Find out the dimensionless quantity	Pressure	Reynoldsnumber	viscosity	density		
We don't use volume balance in a chemical process because	Mass is not conserved in a process	Volume is not conserved in a process	Both a and b	Neither a nor b		
Material balance equation can be applied to	Total mass	Mass of a component	Moles of a component	All of the mentioned		
.Material balance equation cannot be applied to	Total moles	Mass of an atomic species	Moles of an atomic species	All of the mentioned		
A system that does not have material crossing the system boundary is called	Closed System	Open System	Steady state system	None of the mentioned		
.In open system the material crosses the boundary.			Correct for closed			
The above given statement is	Incorrect	Correct	system	None of the mentioned		
A system in which all conditions remain constant with time is called A system in which conditions change with	Open system	Closed system	Steady state system Steady state	Dynamic system		
time is called	Open system	Closed system	system	Dynamic system		
.Gibbs phase rule for general system is	P+F=C-1	P+F=C+1	P+F=C-2	P+F=C+2		
The pressure drop in a packed bed is for a given length.	Constant	Exponentially Increasing	Parabolically Increasing	Linearly Increasing		
The Ergun equation is used to calculate the	Pressure drop in packed beds	Reynolds number in packed columns	Overall heat transfer coefficients	Number of particles		
In the Ergun equation, what do you understand by the term X? $f = \Delta P / L$ X/p ϑ S2(\in 3/(1- \in))	Diameter of the tube	Diameter of the pellets	Effective diameter	Equivalent diameter of the tube		

In the Formula for porosity, what is the				
meaning of the term V? ϕ = VVT	Volume of Void	Volume of Pure Solid	Total Volume	Volume of the tube material
The substance used in fluidised bed is	· [· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
	Same as Packed Bed	Powdered Substance	Large balls	Finely divided Solid material
At fluidisation, the upward drag force is	· · · · · · · · · · · · · · · · · · ·			
the weight of the particles	Equal to	Slightly higher than	Less than	Negligible to
The pressure drop in fluidised bed on	· · · · · · · · · · · · · · · · · · ·			
fluidisation with increasing	1	'		
flow rate.	Remains same	Linearly increases	Linearly decreases	Remains zero
.At fluidisation, the temperature of the bed	1	'		
is	Constant but non-uniform	Same for fluid and particles	Non uniform	Increasing from the bottom
.At minimum fluidisation flow rate, the gas	· [· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
flow velocity is also known as	1	1		
of the pellets.	Superficial velocity	Terminal velocity	Average velocity	Transport velocity